AUTONOMOUS TECHNOLOGIES FOR UNMANNED CARGO SHIPS

Dipl.-Wirtsch.-Ing. Univ. Hans-Christoph Burmeister

18.03.2015 – Digital Ship, Hamburg
AGENDA

1. Fraunhofer CML introduction
2. MUNIN overview
3. Autonomous Bridge
4. MUNIN Test-bed
5. Conclusion and Outlook
Introduction

Fraunhofer CML’s conducts applied research for the industry

- Fraunhofer CML conducts applied research for the maritime industry
- Activities (amongst others)
 - Navigational safety and risks
 - Decisions support tools
 - Ship-shore-integration
 - Ship management
Introduction
Focus on commercial and navigational ship operations

Sea Traffic and Nautical solutions
- **Topics**
 - Sea traffic’s safety
 - Sea traffic’s efficiency
 - Navigational solutions
- **Tools**
 - Ship handling simulation
 - ENC SDK
 - AIS-data analysis framework

Ship and information Management
- **Topics**
 - Maritime Information Management
 - Ship Management
- **Tools**
 - Mathematical optimization
 - Operations research technologies
AGENDA

1. Fraunhofer CML introduction
2. **MUNIN overview**
3. Autonomous Bridge
4. MUNIN Test-bed
5. Conclusion and Outlook
MUNIN’s overview

Key facts of the project

Maritime Unmanned Navigation through Intelligence in Networks

- European FP7 project from Sep 2012 to Aug 2015
- 8 partners with 2.9 million € funding
- Focus:
 - Develop a concept for an unmanned merchant vessel
 - Validate concept in a simulator set-up
MUNIN’s Aim
Project definition of the autonomous vessel

Autonomous ship

Next generation modular control systems and communications technology [that] will enable wireless monitoring and control functions both on and off board. These will include advanced decision support systems to provide a capability to operate ships remotely under semi or fully autonomous control.

Autonomous ship

No persons on board for whole or part of the voyage. The ship, with partial help from remote control, must be able to manage the voyage on its own.
MUNIN’s Vision
Unmanned deep-sea voyage
MUNIN’s Use Case
Dry bulk carrier on deep-sea-voyage

Reasons:
- Long deep-sea-voyage
- Low risk cargo
- Slow steaming attractiveness
AGENDA

1. Fraunhofer CML introduction
2. MUNIN overview
3. Autonomous Bridge
4. MUNIN Test-bed
5. Conclusion and Outlook
MUNIN’s navigational systems
Enabling unmanned navigation during deep-sea voyage

Advanced Sensors System
Electronic lookout
- Detect small objects
- Detect weather phenomena

Autonomous Navigation System
Op. decision-making
- Avoid collisions
- Ensure stability in harsh weather

Shore Control Centre
Human element
- Monitor voyage and vessel
- Problem-solving
Autonomous Bridge
Short term use case „Watchfree bridge“

- Autonomous Engine Room
 - Partly unattended engine room already exists
 - Class notation **E0** which is considered to meet the regulations of the *International Convention for the Safety of Life at Sea (SOLAS)* for *unattended machinery spaces* [...]

- Autonomous navigation can lead towards **B0** „watch-free bridge“
 - Flextime work for nautical officers onboard
 - Improved shore intervention possibilities
 - Less manning possible

- Important date: New SOLAS in 2024
AGENDA

1. Fraunhofer CML introduction
2. MUNIN overview
3. Autonomous Bridge
4. MUNIN Test-bed
5. Conclusion and Outlook
MUNIN Test-bed
Integrated simulation-based environment

Advanced Sensor System

Shore Control Center
Maintenance Interaction System

Remote Maneuvering Support System

Deep-Sea Navigation System

Engine Monitoring & Control System
Energy Efficiency System

Ship handling simulation
MUNIN Advanced Sensor Module
Sensor fusion approach

COLREG §5
Every vessel shall at all times maintain a proper look-out by sight and hearing as well as by all available means appropriate [...]
MUNIN Advanced Sensor Module
In-situ tests performed in Norway
MUNIN Deep Sea Navigation System
Integration of COLREG and Harsh Weather

Safety and Shipping Review 2014, Allianz

Autonomous Navigation System

- Weather Routing Module
 - Strategic
- Collision Avoidance Module
 - Risk of Collision
 - Immediate Danger

Track Pilot
- Rudder Control
- Engine Control

© Fraunhofer CML
MUNIN Deep Sea Navigation System
Simulation and hardware prototypes
MUNIN Shore Control Center
Human Centered Design

human-out-of-the-loop syndrome

Human Error

If x else
a --> 2.5
b = 1.3.04
MUNIN Shore Control Center
Fully integrated prototype
MUNIN Test-bed
Validation methodology

- Sensor emulation
- Four full scale In-situ test
- AIS-Data tests (CA only)
- Ship handling simulation (WR&CA)
- Small-scale in-situ test (CA only)
- HMI-Tests in simulator
- Stresstest in simulator

<table>
<thead>
<tr>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️</td>
</tr>
<tr>
<td>✔️</td>
</tr>
<tr>
<td>✔️</td>
</tr>
<tr>
<td>✔️</td>
</tr>
<tr>
<td>ongoing</td>
</tr>
<tr>
<td>ongoing</td>
</tr>
</tbody>
</table>
AGENDA

1. Fraunhofer CML introduction
2. MUNIN overview
3. Autonomous Bridge
4. MUNIN Test-bed
5. Conclusion and Outlook
Conclusions
Short-term applications of MUNIN technology developments

Automated Lookout / Watch free bridge
- Single source of reliable data provision
- No reduced lookout capability due to fatigue

Autonomous deep-sea navigation
- COLREG compliance
- Hull and motion monitoring in harsh weather

Shore-side traffic guidance / Watch from shore
- Human-oriented information management
- Remote situation awareness concept

Combination to B0 possible
Outlook

Full validation in the EMSN feasible
Outlook
MUNIN on tour

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.-13.05.2015</td>
<td>Scientific session at COMPIT</td>
<td>Ulrichshusen, DE</td>
</tr>
<tr>
<td>03.06.2015</td>
<td>3rd MUNIN Industry Workshop, Norshipping</td>
<td>Oslo, NO</td>
</tr>
<tr>
<td>10.-11.06.2015</td>
<td>MUNIN final promotion event</td>
<td>Hamburg, DE</td>
</tr>
<tr>
<td>17.-19.06.2015</td>
<td>Scientific session at TransNav</td>
<td>Gdynia, PL</td>
</tr>
</tbody>
</table>

Norshipping workshop including participation from RollsRoyce, Maritime Lawyers further more

Final workshop including technical tour through the MUNIN test-bed

Please check also:
www.unmanned-ship.org
Thank you - MUNIN receives funding under FP7-GA314286

MUNIN FINAL EVENT

10th – 11th June 2015 • Hamburg • 53°7,8’N 009°58,1’E

Is unmanned and autonomous shipping feasible?
– And is it desirable?